Duality theory for multi-marginal optimal transport with repulsive costs in metric spaces

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximation of endpoints for multi-valued mappings in metric spaces

In this paper, under some appropriate conditions, we prove some $Delta$ and strong convergence theorems of endpoints for multi-valued nonexpansive mappings using modified Agarwal-O'Regan-Sahu iterative process in the general setting of 2-uniformly convex hyperbolic spaces. Our results extend and unify some recent results of the current literature.

متن کامل

Ricci Curvature for Metric-measure Spaces via Optimal Transport

We define a notion of a measured length space X having nonnegative N -Ricci curvature, for N ∈ [1,∞), or having ∞-Ricci curvature bounded below by K, for K ∈ R. The definitions are in terms of the displacement convexity of certain functions on the associated Wasserstein metric space P2(X) of probability measures. We show that these properties are preserved under measured Gromov-Hausdorff limits...

متن کامل

Optimal Transport and Ricci Curvature for Metric-measure Spaces

We survey work of Lott-Villani and Sturm on lower Ricci curvature bounds for metric-measure spaces. An intriguing question is whether one can extend notions of smooth Riemannian geometry to general metric spaces. Besides the inherent interest, such extensions sometimes allow one to prove results about smooth Riemannian manifolds, using compactness theorems. There is a good notion of a metric sp...

متن کامل

Curvature of Hypergraphs via Multi-Marginal Optimal Transport

We introduce a novel definition of curvature for hypergraphs, a natural generalization of graphs, by introducing a multimarginal optimal transport problem for a naturally defined random walk on the hypergraph. This curvature, termed coarse scalar curvature, generalizes a recent definition of Ricci curvature for Markov chains on metric spaces by Ollivier [Journal of Functional Analysis 256 (2009...

متن کامل

Decoupling of DeGiorgi-type systems via multi-marginal optimal transport∗

We exhibit a surprising relationship between elliptic gradient systems of PDEs, multi-marginal MongeKantorovich optimal transport problem, and multivariable Hardy-Littlewood inequalities. We show that the notion of an orientable elliptic system, conjectured in [6] to imply that (in low dimensions) solutions with certain monotonicity properties are essentially 1-dimensional, is equivalent to the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ESAIM: Control, Optimisation and Calculus of Variations

سال: 2019

ISSN: 1292-8119,1262-3377

DOI: 10.1051/cocv/2018062